New Results on the Identification of Interval Predictor Models
نویسندگان
چکیده
In this paper, the problem of identifying a predictor model for an unknown system is studied. Instead of standard models returning a prediction value as output, we consider models returning prediction intervals. Identification is performed according to some optimality criteria, and, thanks to this approach, we are able to provide, independently of the data generation mechanism, an exact evaluation of the reliability (i.e. the probability of containing the actual true system output value) of the prediction intervals returned by the identified models. This is in contrast to standard identification where strong assumptions on the system generating data are usually required. Copyright © 2005 IFAC
منابع مشابه
New DEA/Location Models with Interval Data
Recently the concept of facility efficiency, which defined by data envelopment analysis (DEA), introduced as a location modeling objective, that provides facilities location’s effect on their performance in serving demands. By combining the DEA models with the location problem, two types of “efficiencies” are optimized: spatial efficiency which measured by finding the least cost location and al...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملA New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating
Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملA Learning Theory Approach to the Construction of Predictor Models
This paper presents new results for the identification of predictive models for unknown dynamical systems. The three key elements of the proposed approach are: i) an unknown mechanism that generates the observed data; ii) a family of models, among which we select our predictor, on the basis of past observations; iii) an optimality criterion that we want to minimize. A major departure from stand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005